

Auf dem Weg zum Regelwerk für Fischschutz und Fischabstiegsanlagen

Bad Karlshafen, 28. März 2019

Rita Keuneke (Ingenieurbüro Floecksmühle GmbH) Dr. Christian Göhl (Fichtner Water & Transportation GmbH)

beide Mitglieder der DWA-AG WW 8.1 Fischschutz- und Fischabstiegsanlagen

DWA

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.

Themenkomplex "Fischschutz" Beteiligte Gremien in der DWA

Hauptausschuss Wasserbau und Wasserkraft

Fachausschuss WW-1 "Flussbau"

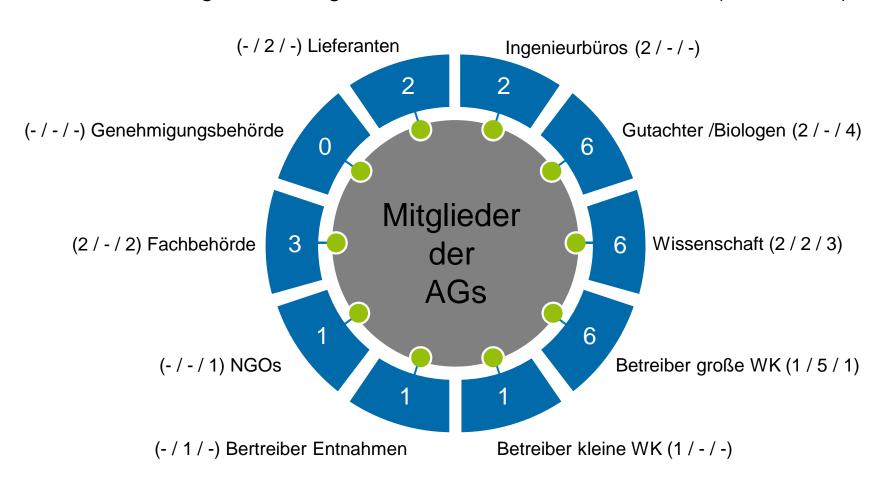
Fachausschuss WW-3 "Hydraulik"

Fachausschuss WW-5
"Wasserkraft"

Fachausschuss WW-8 "Ökologische Durchgängigkeit von Fließgewässern"

AG WW-1.2 "Sohlengleiten, Raugerinne, Verbindungsgewässer"

AG WW-3.7 "Hydraulik von Fischaufstiegsanlagen" AG WW-5.6 "Rechen und Rechenreinigungsanlagen" AG WW-8.1 "Fischschutz- und Fischabstiegsanlagen"


AG WW-8.2 "Funktionskontrolle von Fischaufstiegs- und Fischabstiegsanlagen"

AG WW-8.3 "Fischaufstiegsanlagen und fischpassierbare Bauwerke"

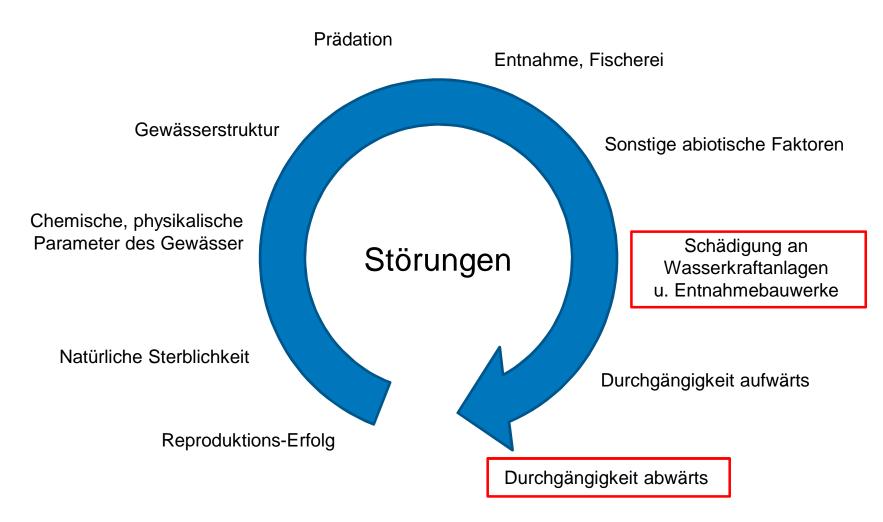
Zusammensetzung der DWA-AGs im Themenbereich Fischschutz

Wie sind wir aufgestellt? Mitglieder der AG 8.1 / AG 5.6 / AG 8.3 (10 / 10 / 11)

Aufgabenstellung der DWA-AG WW 8.1 "Fischschutz- und Fischabstiegsanlagen"

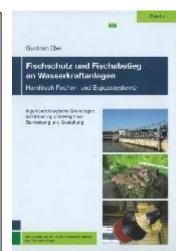
- Überarbeitung DWA-Themenband von 2005
 - tatsächlichen Stand der Technik ermitteln und darstellen
 - neue Lösungsansätze und Erfahrungen aufgreifen und hinsichtlich ihrer Eignung und Anwendbarkeit bewerten
 - Koordination der Beiträge anderer AGs
- Ergebnisse des Forums Fischschutz &
 Fischabstieg (F+E-Vorhaben des
 Umweltbundesamtes) nutzen und fortschreiben.
- Ziel ist die Erarbeitung eines DWA-Merkblattes zum Fischschutz- und Fischabstieg

Fragen zur Entwicklung des Standes der Technik

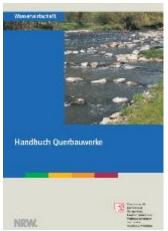


- Ist neues Grundlagenwissen verfügbar?
- Haben sich die rechtlichen Rahmenbedingungen verändert?
- In welchen Bereichen gibt es neue Entwicklungen bzw. Technologien?
- Welche Erkenntnisse konnten durch Untersuchungen oder praktische Erfahrungen belegt werden?
- Konnten Anwendungsgrenzen verschoben werden?
- Welche Anwendungsbeispiele sind bekannt?

Heterogene Anforderungen an den Fischschutz



Richtlinien und Publikationen in DE



- Länderspezifische Richtlinien
 - Behandeln meist Fischaufstieg und Fischabstieg
 - Fokus häufig auf Schutzkriterien für Vorranggewässer
- Sonstige Fachliteratur
 - National und international
- Ergebnisse des Forum Fischschutz
 - Synthesepapier
 - Diskussionspapiere

[3]

Zielstellung und Herausforderungen bei der Erstellung eines Merkblattes

Ziel:

- Allgemeingültige Empfehlungen für den Regelfall
- Öffnung für Sonderfälle (Abgrenzung vom Regelfall)
- Repräsentieren des Standes des Wissens und der Technik
- Keine Diskriminierung von Produkten
- Darstellung von Positivbeispielen (kein "ja, aber")
- **>** ...

Arbeitsschritte / Tätigkeiten der DWA-AG WW 8.1

- Ermittlung des aktuellen Standes des Wissens / Standes der Technik
 - Recherche
 - Besichtigungen
 - Bewertung / Diskussion
- Durcharbeiten der Inhalte im Themenheft 2005
 - Relevanz für Merkblatt
 - Vollständigkeit
 - Aktualität
- - Andere AGs der DWA
 - AGAW
 - EIFAAC
- Intensive Mitarbeit im Forum Fischschutz
- Fortschreiben der Inhalt des Merkblattes

Bearbeitung Merkblatt

Vorgesehene Inhalte

- 1. Biologische Grundlagen
- 2. Hydraulische Grundlagen
- 3. Störungen
- 4. Verfahren zur Gewährleistung des Fischschutzes/-abstiegs
- 5. Funktionskontrolle
- 6. Qualitätssicherung

Biologische Grundlagen

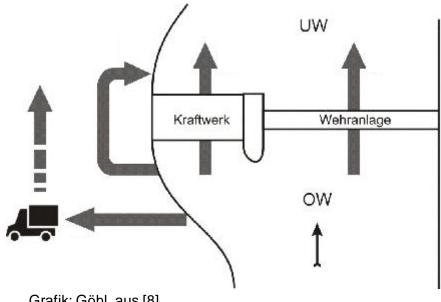
Bild: Göhl

Wissensstand	Wissensstand
hoch	gering
Physiognomie (v.a. Körperform)	Populationsentwicklung
Physiologie (v.a. Schwimmleistung)	 Stimuli / Auslöser von Wanderungen
Verhalten an Barrieren	Orientierung / Wanderkorridore
 Zeitliche Verteilung von Wanderungen 	Verhalten an Leiteinrichtungen
	Schädigungspotenziale /
	Schwellenwerte

Störungen / Beeinträchtigungen

Bild Göhl

Wissensstand	Wissensstand								
hoch	gering								
 Schädigung in Turbinen für einige 	Schadensursachen in Turbinen /								
Arten	Schwellenwerte								
 Erkenntnisse für Lachs 	Passage von Wehren								
 Erkenntnisse für Aal 	Bedeutung der Verzögerung								
	Desorientierung und Prädation								
	 Schädigung potamodromer Arten 								


Möglichkeiten des Fischschutzes und Fischabstieges

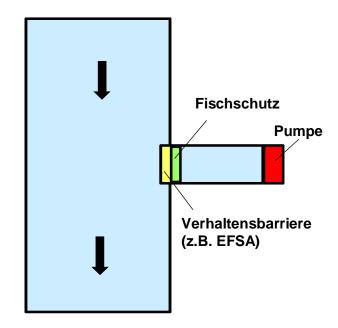
Grobe Themenstruktur / Lösungswege

- Fischschutz bei Seitenentnahmen
- 2. Fischabstiegsanlagen
- 3. Reduzierte Schädigung bei der Passage von Turbinen

4. Managementsysteme

Grafik: Göhl, aus [8]

Fischschutz bei Seitenentnahmen



Anwendung bei

- Kühlwasserentnahmen
- Brauchwasserentnahmen

Bild: Bilfinger Water Technologies GmbH [13]

- + Etablierte Systeme (v.a. Siebband)
- + Neue Technologien (z.B. MultiDisc®)
- + Gute Funktionsnachweise
- Begrenzter Einsatzbereich

Bestandteile:

- Schutzsystem (Rechen)
- Leitsystem
- Einstieg / Sammelsystem
- Ableitung

Bilder: RWE innogy

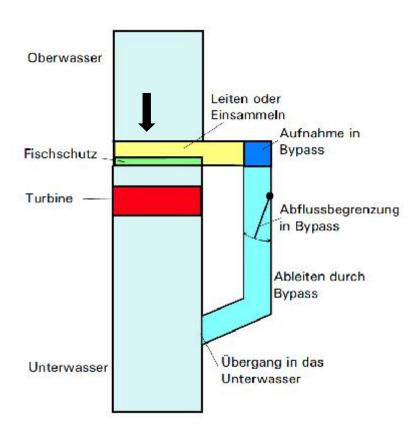


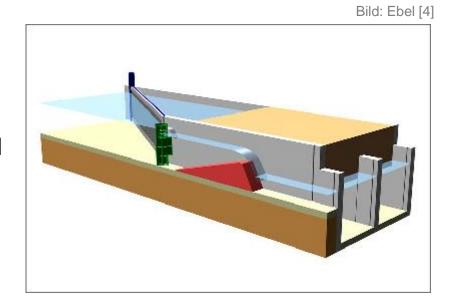
Abbildung: Hassinger, Uni Kassel

Derzeitige Anwendungsgrenzen von Rechen:

Lichter	Durchfluss [m³/s], (Anzahl Reiniger)											
Stababstand [mm]	Vertikal (α)	Horizontal (β)										
10	16 (1) Roermond 28 (3) Unkelmühle	25,5 (1) *) Freyburg 48 (1) *) Öblitz										
15	42 (2) Mihla	30 (1) Rappenberghalde 35 (1) *) Kemnade										
20	160 (2) **) Kostheim	68 (1) Rothenburg 88 (1) Reguhn										

^{*)} Nachweis fehlt **) Funktion fraglich

Mit Vertikalrechen (ca. bis 30 m³/s) und Horizontalrechen (bis ca. 50 m³/s je Recheneinheit) gibt es gegenwärtig einen Stand des Wissens und der Technik, mit dem funktionsfähige, mechanische Fischschutzund Abstiegsanlagen einschließlich der erforderlichen Reinigungstechnik realisiert werden können.



Quelle: UBA, Forum Fischschutz, Synthesepapier [3]

Horizontale Rechen:

- z.B. Leitrechen-Bypasssystem nach Ebel, Gluch & Kehl
- i.d.R. horizontale RRM
- Meist seitliche Passage-Korridore
- Oberflächenabstieg möglich (z.B. Auer-Kotten)
- Sohlbalken als Geschiebeabweis und Leiteinrichtung für bodenorientierte Arten

Offen Fragen bei Rechenanlagen:

- Leitwirkung und mögliche Länge, relevante Geschwindigkeit
- Wirkungsweise des Einstieges, zulässige Geschwindigkeiten
- Betriebliche Aspekte, Rechenreinigung

Beispiele, horizontale Rechen:

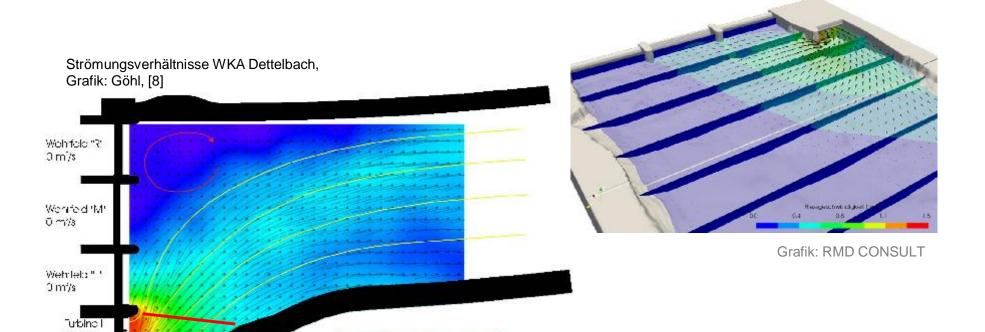
WKA Raguhn: 20 mm (88 m³/s)

20 mm (50 m³/s) WKA Halle-Planena:

15 mm (35 m³/s) WKA Kemnade:

WKA Öblitz 10 mm (48 m³/s)

im Bau: Muldestausee 15 mm (69 m³/s)



WKA Keselstraße:

Anordnung von Rechenanlagen bei großen Flusskraftwerken:

- Heterogene Verteilung der Fließgeschwindigkeiten
- Keine Ebene mit regelmäßiger Leitwirkung

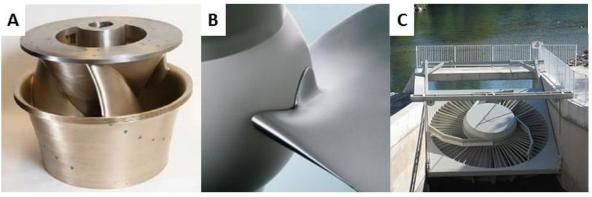
Betriebliche Aspekte:

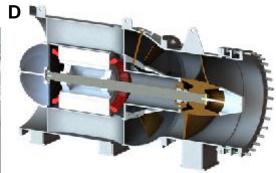
- Treibgut
- Sediment
- Eis
- Mechanische und dynamische Belastung

Bild: Uniper

Bilder: RWE innogy

Reduzierte Schädigung bei der Turbinenpassage

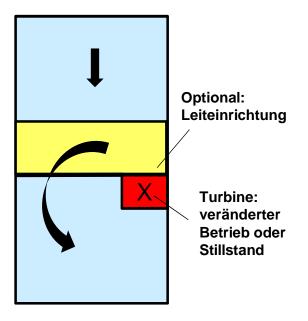

DWAO


Ansätze:

- Reduzierte Kollisionswahrscheinlichkeit
- Spalt-Reduzierung
- Angepasste hydraulische Parameter und Druckverhältnisse
- Veränderte Betriebsweise

Bild: Kiver, RMD AG

Modell einer Alden-Turbine (A), Naben-Ansicht einer Minimum gap runners MGR (B), VLH-Turbine in Servicestellung (C), Schnittbild Nijhuis-Turbine (D)(HOGAN et al. 2014; KABLE INTELLIGENCE LIMITED 2017; VOITH GMBH 2017, PENTAIR 2017)


Managementsysteme

DWAO

Einsatz nach:

- saisonalen Regelungen
- auf Basis von Alarmsystemen
- nach in-situ-Befunden

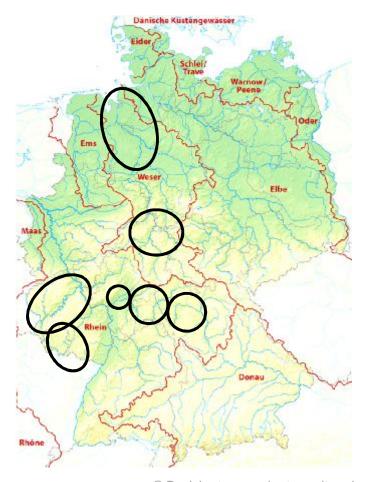
- + Einfach umsetzbar
- + Eignung für spezifische Managementziele
- + Wirkung durch Fang & Transport über Staukette hinweg möglich
- Artspezifisch
- z.T. hohe Kosten
- Wirkung nur bedingt messbar

Aal-Managementsysteme in DE

Gewässer:

Mosel, Main, Weser

Alarmgeber:


- Befunde aus Befischungen,
- Frühwarnsystem MIGROMAT®

Schutz:

- angepasstes Turbinen-Management,
- angepasster Anlagenbetrieb,
- Stilllegung

Begleitmaßnahmen:

Catch and Carry (~ 15 - 20 t/a)

© Basiskarte: www.kartenwelten.de

					2015				2016				2017				2018				2019				2020				2021			
	Projekt																															
Nr.	Art der Veröffent- lichung	Titel der Veröffenlichung	Bearbeiter/ Fachgremium	I.	II. III.	III.	IV.	/. I.	II.	III.	ı. IV.	I.	II.	III.	IV.	. І.	II.	III.	IV.	I.	II.	III.	IV.	I.	II.	III.	IV.	I.	II.	III.	IV.	
																														'		
1	Merkblatt	Fischschutz- und	AG WW-8.1 Fischschutz- und Fischabstiegsanlagen	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	G	x	x	x	w	

Erläuterungen:

Vorbereitung und Konzepterarbeitung

x Bearbeitung im zugeordneten Gremium intensive Bearbeitung im zugeordneten Gremium

? Anfang Bearbeitung ohne weitere detaillierte Ablaufplanung

Vorlage des Konzeptentwurfes im zugeordneten Gremium

Veröffentlichung als Arbeitsbericht

Veröffentlichung als Gelbdruck

Veröffentlichung als Weißdruck

Allgemeine Veröffentlichung

Veröffentlichung als Themen

Kontakte der Referenten

Referentin:

Dipl.-Ing. Rita Keuneke

Ingenieurbüro Floecksmühle GmbH

Bachstraße 62-64 52066 Aachen

info@floecksmuehle-fwt.de

Co-Autor:

Dr.-Ing. Christian Göh

Fichtner Water & Transportation GmbH

Bothestraße 13 81675 München

muenchen@fwt.fichtner.de

Ingenieurbüro Floecksmühle wasser umwelt energie

Kontakte DWA-Arbeitsgruppen

AG WW-8.1 "Fischschutz- und Fischabstiegsanlagen" AG WW-8.2 "Funktionskontrolle von FAA & Fischabstiegsanlagen " AG WW-5.6 "Rechen und Rechenreinigungsanlagen"

Sprecher:

Dr.-Ing. Christian Göhl

Fichtner
Water & Transportation GmbH

Bothestraße 13 81675München

christian.goehl@fwt.fichtner.de

Sprecher:

Dipl.-Fischereiing. Jens Görlach

Thüringer Landesanstalt für Umwelt und Geologie Regionalstelle Suhl Referat 55 - Wasserbau

Rimbachstraße 30 98527 Suhl

jens.goerlach@tlug.thueringen.de

Sprecher:

Prof. Dr.-Ing. Gerhard Haimerl

Lehrgebiet Wasserbau Hochschule Biberach

Karlstraße 11 88400 Biberach

haimerl@hochschule-bc.de

Literatur

- [1] ATV-DVWK (2004): ATV-DVWK Themen. Fischschutz- und Fischabstiegsanlagen Bemessung, Gestaltung, Funktionskontrolle. ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hrsg., 260 S. Hennef
- [2] DWA (2005): DWA Topics. Fish Protection Technologies and Downstream Fishways Dimensioning, Design, Effectiveness Inspection. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hrsg., 228 S. Hennef
- [3] UBA (2014): Forum "Fischschutz- und Fischabstieg", Synthesepapier Ergebnisse der Workshops. Umweltbundesamt, Hrsg. Dessau
- [4] Ebel, G. (2013): Fischschutz und Fischabstieg an Wasserkraftanalagen Handbuch Rechen- und Bypasssysteme. Ingenieurbiologische Grundlagen, Modellierung und Prognose, Bemessung und Gestaltung. Mitteilung aus dem Büro für Gewässerökologie und Fischereibiologie Dr. Ebel, Band 4, 483 S. Halle (Saale).
- [5] Handbuch Querbauwerke. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Hrsg., 214 S.
- [6] TLUG, Fachliche Anforderungen zur Herstellung der Durchgängigkeit in Thüringer Fließgewässern
- [7] LFU, Durchgängigkeit für Tiere in Fließgewässern
- [8] Göhl, C. (2004): Bypasseinrichtungen zum Abstieg von Aalen an Wasserkraftanlagen. Berichte des Lehstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft, Technische Universität München. Univ.-Prof. Dr.-Ing. Th. Strobl, Hrsg., Nr. 98. 153 S. München.
- [9] HOGAN, T.W.; CADA, G.F. & AMARAL, S.V. (2014): The status of environmentally enhanced hydropower turbines. Fisheries, 39, 164-172.
- [10] Kable Intelligence Limited (2017): Very low head turbine. http://www.power-technology.com/features/feature115301/feature115301-1.html, 10.12.2017
- [11] VOITH GMBH (2017): Minimum Gap Runner. http://www.voith.com/de/s2_vh_minimum_gap_runner.png, 10.12.2017
- [12] PENTAIR (20107): Pentair Fairbanks Nijhuis fish friendly turbine. http://fairbanksnijhuis.pentair.com/en/products/fish-friendly-turbine/ fish-friendly-turbine-functional description.png. 09.10.2017
- [13] GeigerPassavant (2012): Fischschutz-Technik Fischschutzmaßnahmen an Kühlwassereinläufen. Präsentation Fischschutz-Technik D, 05.03.2012
- [14] LUBW (2016): Handreichung Fischschutz und Fischabstieg an Wasserkraftanlagen Fachliche Grundlagen. LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Hrsg., 32 S. Karlsruhe
- [15] KLAWA (2017): Aalabstieg Zick-Zack, http://www.klawa-gmbh.de/de/geschaeftsfelder/oekologische-wasserkrafttechnik/aalabstieg/csm_Wasserkraft_Fischschutz_Aalabstieg_Blankaale_Zickzackrohr_c7c40153c9.jpg, 10.10.2017

